太阳城app 沙巴体育 专业的中文博彩网站 威尼斯人网上赌场

科学研究

打造高水平科技创新平台和一流科研团队!

MENU

学术活动

数学与统计学院"21世纪学科前沿"系列学术报告预告

Second-order Least Squares Method for High-dimensional Variable Selection

编辑: 数学学院 董学敏 时间:2015-06-01
报告题目:Second-order Least Squares Method for High-dimensional Variable Selection
报告时间:2015年6月2日下午3:00-4:00
报告地点:良乡1-208
报告人:Professor Liqun Wang, Department of Statistics, University of Manitoba, Canada
摘要:High-dimensional variable selection problems arise in many scientific fields, including genome and health science, economics and finance, astronomy and physics, signal processing and imaging. In statistics, various regularization methods have been studied based on either likelihood or least squares principles. In this talk, I will propose a regularized second order least squares method for variable selection in linear or nonlinear regression models. This method is based the first two conditional moments of the response variable given on the predictor variables. It is asymptotically more efficient than the ordinary least squares method when the regression error has nonzero third moment. Consequently the new method is more robust against asymmetric error distributions. I will demonstrate the effectiveness of this method through Monte Carlo simulation studies. A real data application will be presented to further illustrate the method.
太阳城app 开云电子(中国)官网 博彩app IM体育 欧宝体育 沙巴体育官网 世界杯压球 博彩平台 全球十大外围足球平台 网上赌搏平台网址大全 世界杯官网买球平台 沙巴体育 澳门新葡京娱乐城 澳门金沙博彩官网 澳门新葡京在线 沙巴体育 澳门新葡京娱乐城 澳门金沙博彩官网 澳门新葡京在线 >网站地图-sitemap